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The correlation function describes the time development of the wave packet placed by
photoabsorption or photoionization onto the potential surface of an upper electronic state. The
function can be obtained as a Fourier transform of the electronic band, and gives information
about the features of the final state. The analytical expressions for the correlation function
within the harmonic oscillator approximation are presented. Because of some unique
properties of the correlation function, the expressions can be used to obtain accurate geometric
details of the final state from experimental data. The approach is tested on some photoelectron
spectra of diatomics and compared to known data. The method yields the equilibrium
internuclear distance with an accuracy of + 0.0025 A, and resolves the sign uncertainty
present in the conventional harmonic Franck-Condon analysis. The comparison of the
experimental data with the predictions of the harmonic model gives a deeper insight into the

behavior of a wave packet in an anharmonic potential.

I. INTRODUCTION

The Franck—Condon analysis of the bands observed in
electronic spectra of molecules is generally held to be a pow-
erful tool for extracting the geometric parameters of the in-
volved states."” In particular, the quantitative application of
the Franck-Condon principle to photoelectron spectra
yields valuable details on the geometry of molecular ions in
their ground and electronically excited states; where alterna-
tive sources of information are rather limited.’

More often than not, the typical procedure (as applied
to photoelectron spectroscopy) relies upon the following
simplifications:

(a) The electronic transition moment is assumed to be
constant for a given photoelectron band, so that the observed
intensity distribution is entirely governed by the associated
vibrational overlaps, the so-called Franck—Condon factors.

(b) For polyatomic molecules it is assumed that the
normal coordinates of the initial state give an adequate de-
scription of the vibrational modes of the final state and that,
consequently, the Duschinsky transformation* can be re-
placed with the simplified expression according to Coon ef
al.® This transforms a polyatomic problem into a set of de-
coupled quasidiatomic problems, allowing the separation of
the total intensity distribution into a product of partial dis-
tributions associated with single normal modes of vibration.
Incidentally, the number of normal modes one has to cope
with is greatly reduced because in most cases only totally
symmetric vibrational modes are excited in photoelectron
spectra.

(¢) The Boltzmann terms are usually ignored and, ac-
cordingly, the vibrational quantum number of the initial
state is restricted to zero.

(d) Each of the quasidiatomic overlaps is very often
assumed to be reasonably well simulated within the harmon-
ic oscillator approximation.

The first assumption seems to be acceptable for the vast
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majority of cases (H, being a notorious counterexample®),
while the second assumption works reasonably well when-
ever the molecule and the ion belong to the same symmetry
point group.” For most molecules, where spectra are record-
ed at room temperature, the third assumption does not intro-
duce a seriou¥ error, especially if the vibrational structure is
well resolved. It is the fourth assumption that severely limits
the accuracy of the conventional Franck—Condon analysis.
Nevertheless, the harmonic oscillator approximation is
widely used because of its simplicity, and because in many
cases it is the only practical approach. The expressions for
Franck-Condon factors within the harmonic approxima-
tion have been given by several authors in a handy, closed
form,*'! which can be sometimes simplified even further
into a Poisson distribution (see Appendix). The latter is of-
ten exploited in least-squares fitting procedures, where the
iterative nature of the process commands the use of the sim-
plest possible expression for the vibrational intensity distri-
bution.

Recently, Heller'? laid out the theoretical grounds for
an alternative approach to the analysis of observed vibra-
tional intensities. Namely, he has shown that the Fourier
transform of the vibrational intensity distribution within an
electronic band is closely related to the autocorrelation func-
tion C(¢),

cw =f dq V*(¢,)%(q,0), (L)

where ¥ (q,t) is the time-dependent nuclear wave function,
and g is the space spanned by the normal coordinates. The
autocorrelation function describes the evolution in time of
the wave packet created by photoabsorption, as it propagates
on the potential surface of the final electronic state. Heller!?
suggested that C(¢) could be evaluated numerically from
classical trajectories, especially if the final electronic state is
dissociative.
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Only a few years later, we witnessed a very interesting
application of this new approach to photoelectron spectra of
N,, HBr, HCN,'*"> and very recently to C,H,.'*!” Those
were the pioneering attempts to use a procedure that may be
perhaps baptized FTPES (Fourier transform photoelectron
spectroscopy ). It has been demonstrated'*'” that a discrete
Fourier transform of a photoelectron band leads to an ex-
perimental vibrational autocorrelation function after the
necessary corrections for finite instrumental resolution, mo-
lecular rotation, and spin-orbit splitting have been applied.
The relationship between the vibrational correlation func-
tion C(¢) and the photoelectron partial cross section o(E)
has been shown'*!” to be

C(t) X L(t) fw dE g(E)e —E/% (1.2)
with L(¢) factored into
L(1) = Gy, (1) X C (£) X Cp, (). (1.3)

Cioste (2) is a damping factor and reflects the finite instru-
mental resolution, C, (#) is an oscillatory factor arising from
spin-orbit effects, and C,, (¢) is the correlation function of a
molecular rotor. As only C(¢) contains information on the
potential surface of the final state, the Fourier transform of
o(E) has to be corrected for the complicating factor L(z).
Cineir (2) is best simulated'*!” by a Fourier transform of a
noble gas photoelectron peak; C,, (¢#) and Cy, (£) can be ap-
proximated'* as

Crot(t)zexr)[ - (kT/I)tZ], &
Cq (1) =1 + exp(iQt /#), (1.4)

where I is the moment of inertia and £} is the spin-orbit split-
ting. The resulting vibrational autocorrelation function ap-
pears to be an elegant way of following the intramolecular
dynamical processes during the first hundred or so femtose-
conds, and is, in a way, complementary to direct time-depen-
dent measurements.

The studies'>™'” mentioned above have dealt primarily
with the autocorrelation function for photodissociative pro-
cesses. In this paper we will try to investigate some of the
advantages of FTPES over conventional Franck—Condon
analysis for bound—bound electronic transitions, and to ad-
dress some of the open questions in the field. Our attention
will be focused primarily on the extraction of geometric pa-
rameters of molecular ions. In particular, our aim is to keep
the usual assumptions and simplifications listed under (a) to
(d) above, while trying, at the same time, to alleviate the
error introduced by the harmonic approximation.

ii. MODEL

As mentioned in the Introduction, many Franck—Con-
don analyses, including polyatomic cases, have been per-
formed using the harmonic oscillator approach in a quasi-
diatomic fashion. In this section we will derive analytical
expressions for the autocorrelation function at the same level
of approximation.

Let us examine more closely the autocorrelation func-
tion C(¢) from Eq. (1.1) for a wave packet propagated by a
vertical transition from the multidimensional potential sur-
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face of the initial electronic state to the potential surface
describing the final electronic state. Furthermore, let us sup-
pose that the upper potential supports only bound states. In
that case the time-dependent wave function ¥(g,t) can be
expanded in terms of the stationary wave functions ®;, (g) of
the upper surface'®

V(g =Y 4,0, (q)e” 7, 2.1)
n=0

where 4, are expansion coefficients which are time indepen-

dent, and E,, are the energies of the stationary states of the

upper surface. In the sudden approximation, the wave pack-

et ¥(g,0) at time ¢ = O has the form

¥(g,0) =®,,(g—A), (2.2)
where ®@,, (¢ — A) is a stationary wave function of the lower
surface defined by the quantum number m of the initial vi-
brational state, and A is the difference in the equilibrium
positions of the two potentials. By combining Eqgs. (2.1) and
(2.2),

> 4,2,(9) =2,(q—A) (2.3)
n=0
and by using the orthonormality of the functions ®,, (¢) we
get

4, =J dq ®,*(9)®,,(q — A), 2.4)

which shows, as expected, that the expansion coefficients 4,
are simply overlap integrals between stationary nuclear
wave functions of the lower and upper surface. From Egs.
(1.1), (2.1), and (2.2) we have

c) ;j dg 3 A0 ()e" "D, (g — A).
— n=0
2.5)

Using again the orthonormality of @, (¢), Eq. (2.5) reduces
to

Cy= 3 A3d, ", (2.6)
n=0
where 4 ¥4, are the Franck—Condon factors
© 2
am, = [ wer@e.q-n. e

It is worthwhile to note'? that the modulus and the real part
of C(2) are even functions about r = 0, while the imaginary
part is an odd function about ¢ = 0. This guarantees that the
Fourier transform of C(¢) is real.

At this point we will introduce the quasidiatomic ap-
proach,”” and restrict our discussion either to one of the
separable normal modes of vibration of a polyatomic mole-
cule or to a diatomic case. Futhermore, we substitute the two
potential curves in question by two harmonic oscillators. It
becomes clear that by virtue of E, = (n 4 1/2)#w’, the au-
tocorrelation function C(¢) of Eq. (2.6) is, if we ignore the
phase factor exp[ (1)iw't], a periodic function of time with
the period of the upper oscillator 7 = 27/w’. Because the
expansion coefficients 4, are chosen such that

S A4, =1,
n=0
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the autocorrelation function C(¢) acquires 2 maximum val-
ue of one at the end of each period 7, which is the same as
saying that the shape of a wave packet vibrating in a harmon-
ic potential does not change in time. This is true even if the
shape of the wave packet is not identical to the vibrationless
wave function of the potential in which it oscillates. Stated
alternatively, a wave packet oscillating in a harmonic poten-
tial remains localized and its uncertainty remains constant,
regardless of whether the packet is initially at minimum un-
certainty or not. A similar conclusion can be reached by
studying the behavior of a Gaussian wave packet in an exter-
nally driven harmonic oscillator. It is known'® that the wave
packet remains Gaussian in shape and that the interaction
with the external field produces coherent states.

Within the harmonic approximation, both the modulus
and the real part of C(t) are even functions about ¢ = k7'/2,
while the imaginary part of C(¢) is an odd function about
t=kr'" and an even function about t= 2k + 1)7'/2,
(k=0,1,...,0). As we shall see later, C(¢) (or, rather, its
modulus, |C(#)|) does not necessarily acquire a minimum
value after an odd number of half-periods 7'/2.

Substituting 4 ¥4, in Eq. (2.6) with the analytical
expression for the harmonic Franck—Condon factors for a
diatomic molecule, and restricting the vibrational quantum
number of the initial state to zero (see Appendix for the form
used here) gives

C(t) — i e—a(l _,},2)1/2ei(n+1/2)w't
n=0

[n/2]
X{ an/Z—k(I_,;/)n/Z—k

k=0
(n!)1/2 }2
X (/2 —t 4
0 e
r=‘”;'z, (2.8)

wl
_ M 2
a Y o(l —y)A%
where w and ' are classical angular frequencies of the lower
and the upper oscillator, respectively, u is the reduced mass
of the system, and [n/2] denotes the largest integer smaller
than or equal to n/2. Equation (2.8) can be rearranged into

C(t) — e—a(l . 7/Z)I/Ze(i/Z)w't

w [(n/2] [n/2]

X3S Y- i

n=0 k=0 I=o {n—2k)k(n -2
Xangk—l(l _ 7/)n7k~1(7//2)k+1einw’t

(2.9)

which, upon introduction of new summation indices
p=n—k—land g =1—k, yields
& af(1 — y)Peret

p=0 p
(2k+p+ @)
kgo 9=l K1k + N p + Dl p — )t

X (y/2)% + ik + oot (2.10)
where {k,p} denotes the lesser of the two. When p = 0, the

C(t) — e—a(l _ ,}/2)1/26(1'/2)(0'2

o0 @

X
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second term in Eq. (2.10) becomes

& (2k)!

];::0 kD)2 (§/2) el P+ Dt — (] _ 42ty —1/2

and in general it equals to

i o 2k +p +q)lp!
KZ0g= "k KWk + )0+ )l p — !
X(y/2)2k+qei(2k+q)w’t
— (1 _ 7/ZeiZco’t)—l/2(1 _ 7/eia)'t) —p
Therefore, Eq. (2.10) can be rewritten as
C(t) =e (1 — 7,2)1/2e(i/2)m

0 _ iw't _ iw'ty — 1
x3 [a(1—7p)e (} e ) lp 2.11)
p=0 P
which finally gives

30 l—y 1 —972
C(t) = e "P%'tex [ —a(l ——e""’)] (—) ,

) P 1-T 1—-1?
I' = ye". (2.12)

Equation (2.12) is the analytical form of the autocorrelation
function C(z) for a wave packet oscillating in a harmonic
potential characterized by the classical angular frequency
o', At time ¢t = 0, the packet is displaced from the equilibri-
um position by A and its shape corresponds to the minimum
packet of a different harmonic oscillator, whose classical an-
gular frequency is w. Alternatively, Eq. (2.12) is a Fourier
transform of the general form for Franck—Condon factors
between two displaced harmonic oscillators with different
classical frequencies.

Being a complex function, C(¢) can be more convenient-
ly expressed through its modulus |C(#) | and phase ¢(¢) as

(1=
(1 =292 cos 2w't + ¥ V/*
(1+y)(1—cosw't)}

1—2ycosw't+9° )’

¥? sin 20"t )}
1 —9*cos20't

(1 —y)sinw't
1—2ycosw't + 9%’
C(t) =|C(2)|e® .

IC(n| =

Xexp{ —a
1,
(1) = 7{&) t+ atg(

+a

(2.13)

When y =0 (i, ® =), Eq. (2.13) reduces to the par-
ticularly simple form

|C(t)| —_ e—a(l —cosmt),

@(t) =1 wt + asin wt, (2.14)

which corresponds to a Fourier transform of a Poisson dis-
tribution.

As outlined earlier, the modulus |C(¢) | is an even func-
tion about every integer number of half-periods 7'/2 and
acquires the maximum value of one at the end of each period
7'. In addition to this, when ¥ = 0, the modulus |C(7)| ac-
quires the minimum value exp( — 2a) for every odd number
of half-periods 7/2. This means that, if’ the shape of the wave
packet is identical to the vibrationless stationary wave func-
tion of the oscillator in which it oscillates, the minimum
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overlap with the initial position is achieved at maximum
stretching. Obviously, the minimal value itself is a function
of the displacement A between the oscillators: the larger the
initial displacement of the wave packet, the larger the ampli-
tude of oscillation and the lower the minimum value of the
overlap (Fig. 1). However, the situation changes when
y#0. There, depending on the particular values of ¥ and A,
the modulus |C(¢)| can acquire the minimum value any-
where within the range 7'/4<t<7'/2. Thus, C(¢) can, in
principle, have two maxima within the half-period 7'/2 (Fig.
1).

Itis generally known that the Franck—Condon envelope
has more than one maximum for progressions starting from
vibrationally excited states. However, even within the har-
monic approximation, the same can happen for progressions
where the initial state is vibrationally relaxed® and can be
connected to cancellation effects®! traceable to the zeros of
the Hermite functions. The appearance of two maxima with-
in the half-period of |C(¢)| merely reflects this fact. Note
that this property is already built into the Franck—Condon
factors derived within the harmonic oscillator approxima-
tion, and is not something peculiar to the correlation func-
tion. Let us add parenthetically that the combinations of ¢
and A commonly encountered in real examples are rather
unlikely to give rise to experimentally observable double
maxima in the overall vibrational intensity distribution. Al-
though the effect could have, in principle, shown up in any
conventional Franck—Condon fit which goes beyond a sim-

FIG. 1. One vibrational period (7') of the moduli of the correlation func-
tions |C(7)] calculated from the harmonic oscillator model for the following
combinations of parameters: a = {0.1,0.2,0.5,1,2,5), ¥ = {0.2,0, — 0.2}.
To avoid clutter, within each group of three curves corresponding to the
same value of parameter g, the curve shown only on the left side (0<t<7/2)
corresponds to y = 0.2, while the curve shown only on the right side {7/
2<#<7’) corresponds to ¥ = — 0.2. Note that the missing half is a mirror
image of the half that is shown. Curves drawn through the period (0<t<7)
correspond to ¥ = 0.

ple Poisson distribution, the author is not aware of any pub-
lished evidence of this. Namely, this behavior arises mostly
in situations which can be constructed within a model but
are otherwise unphysical, such as a very small change in the
equilibrium internuclear distance connected with a huge in-
crease in the frequency of vibration.

Equation (2.12) allows the numerical computation of
C(¢) within the harmonic approximation for diatomics if ¥
and A are known. The equation can be easily applied to po-
lyatomics whenever the approximation of Coon et al.” is val-
id. This extension is completely equivalent to the situation
encountered when conventional Franck-Condon expres-
sions for diatomics are applied to polyatomic molecules. In
such a case, the expression for the parameter a is not as
straightforward as shown in Eq. (2.8) and has to be derived
using the kinematic and force constant matrices.”? The pa-
rameter A, which has the meaning of a change of equilibrium
position along the selected normal mode of vibration, can be
connected to changes in symmetry coordinates by standard
methods.”” These changes, however, do not affect Eq.
(2.12).

During the computation of C(¢), one needs to calculate
|C(#)! only within the range 0<#<7'/2 and @(¢) within the
range 0<z<7' and use mirror images and repetition to fill in
as many half-periods as needed. Once this is done, there are
two more steps to be performed to obtain a model spectrum:
one involves the convolution of |C(z)| with the Fourier
transform of the desired line shape, while the other is just a
straightforward discrete Fourier transformation. This pro-
cedure is completely equivalent to the conventional ap-
proach using the analytical expressions for Franck—Condon
factors with subsequent convolution by the desired line
shapes, but it has the advantage of being computationally
simpler.

The most serious deficiency of the proposed approach is
the complete neglect of anharmonic effects. Unfortunately,
not much is known about the behavior of a wave packet in an
anharmonic potential. Studies of externally driven Morse
oscillators show? that, although the system starts at nearly
minimum uncertainty, the wave packet spreads and even-
tually breaks up as it absorbs energy from the outer field.
Apparently, the difference between the local force constants
at the inner and the outer wall causes the destruction of the
coherence of the system with the result that the oscillating
wave packet spreads progressively after each “collision”
with the wall.® As long as the potential appears locally qua-
dratic over the width of the packet, its motion is nearly har-
monic. However, while the width of the packet becomes so
large that the portion of the potential probed at any instant
does not appear locally harmonic, it is postulated that the
wave packet will break up rapidly.?>* Translated to the au-
tocorrelation function, this means that the maximum over-
lap is monotonically reduced with each vibrational cycle
(because of the dephasing of the initial wave packet), with
the possibility of successive appearance of multiple maxima
(if and when the wave packet becomes sufficiently fragment-
ed). The latter effect is strictly due to the anharmonic nature
of the oscillator, and should not be confused with the pre-
viously mentioned possibility of C(¢) having an additional
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maximum at ¢ = 7'/2 within the harmonic oscillator ap-
proach. Clearly, the two effects have a similar appearance,
and, as we shall see later, are of comparable magnitude.

The arguments outlined above show clearly that a
straightforward fit of the experimental vibrational autocor-
relation function using Eq. (2.13) will, because of anhar-
monic effects, give a corrupted value for A (¥ can be usually
obtained rather accurately from the observed vibrational
spacings). The same criticism is valid for conventional
Franck—Condon fits of observed vibrational intensity distri-
butions as long as the harmonic approximation is used.
However, although the overall vibrational intensity distribu-
tion is affected by anharmonic effects, it is not unreasonable
to expect that the correlation function will display a nearly
harmonic behavior at times 0 < ¢t < 7'/2, i.e., before the wave
packet has had a chance to “collide” with the opposite wall.
If this is true, then the first half-period of the experimentally
derived moduli of the vibrational correlation functions can
be used, unlike the conventional Franck-Condon analysis,
to obtain reasonably accurate values of A even within the
harmonic approximation.

In order to illustrate this idea and test the model, we
applied the proposed procedure to photoelectron spectra of
several diatomics and compared the obtained bond lengths
with tabulated data.?®

Hl. EXPERIMENTAL

High resolution PE spectra ( =15 meV FWHM, Ar™
2P, ,,) have been recorded on a UVG-3 spectrometer. The
instrument is fitted with a hemispherical analyzer (kept at
constant pass energy) and a varying retarding field, so that,
to a very good approximation, the instrumental sensitivity is
reciprocally proportional to the electron kinetic energy,
while the instrumental resolution is constant.

To prepare the experimental correlation function, the
method proposed by Lorquet ef al.'* has been modified. The
recorded band is first corrected for the instrumental sensitiv-
ity and then Fourier transformed. The same is done sepa-
rately with a spectrum where all but one of the vibrational
peaks in the band (usually, the most prominent one) have
been cut out. The moduli of the two transforms are subse-
quently divided, yielding a correlation function which is si-
multaneously corrected for the instrumental resolution, as
well as for any rotational broadening and spin orbit splitting.
Thus, L(t) from Egs. (1.2} and (1.3) has been simulated by
a Fourier transform of the vibrational line shape. In contrast
to this approach, Lorquet et al.'* used a rare gas peak to
simulate the instrumental resolution and applied separate
corrections for rotational and spin-orbit effects. We tried
both methods, and the results are very similar, although the
difference increases at higher times. However, it should be
clearly pointed out that (at least with the resolution attained
in this work) the initial portion of the modulus of the corre-
lation function, which is used to determine A, is quite insen-
sitive to the actual correction and reasonable results can be
obtained even when no correction is applied.

1V. RESULTS AND DISCUSSION

The initial 20 fs of the moduli of the correlation func-
tions derived as described from PE spectra of N;* X *3 .+

«—N, X'Z}5, N 47, <N, X'3F, O X°1,
«—0, X’27,and NO*" X 'S% « NO X *II are shown as
solid lines in Figs. 2, 3, 4, and 5, respectively, and display the
first vibrational period in the ionic states. The dotted lines on
the same figures represent the first half-period of the corre-
sponding |C(#)] calculated from known values® for w, ',
and A (TableI) using Eq. (2.13). It can be immediately seen
that the theoretical curves closely follow the experimental
results, although there are some systematic deviations.

To explain the nature of these discrepancies, let us recall
that the harmonic potential which is used in the model corre-
sponds to the force constant at the bottom of the well of the
true diatomic potential. Compared to the model, the inner
wallis steeper, while the outer wall has a more gradual slope.
If the equilibrium bond distance in the final state is larger
than in the initial state, the photoabsorption places the wave
packet initially somewhere onto the inner wall of the poten-
tial, as in the cases of N;* X 2" and N," A °I1,, states. Ifa
semiclassical view is adopted, one can conclude that the
wave packet starts moving toward the opposite wall (and
away from its initial position) with an enhanced speed. As a
result, the corresponding correlation function initially dis-
plays values which are somewhat lower than the values pre-
dicted by the model (Figs. 2 and 3). If the equilibrium bond
distance of the final state is shorter than that of the initial
state, as in the cases of O," X ’II, and NO* X 'S states,
the wave packet is placed initially onto the outer wall and the
correlation function displays initially values higher than the
predictions based on the harmonic model (Figs. 4 and 5).
Thus, the relationship between the experimental and theo-
retical correlation functions at very short times can reveal
the correct sign of the change in equilibrium bond distance
A. Note that this is a significant advantage, since the ambigu-

T T T
t/fs 20

O T T T H T T T T T T
0 10

FIG. 2. The initial 20 fs of the modulus of the correlation function obtained
from the PE band of the N;” X?2"«-N, X' transition (solid line),
and the first half-period of the modulus of the correlation function simulat-
ed within the harmonic model (dotted line).

J. Ghem. Phys._, Vol. 85, No. 7, 1 October 1986



Branko Rusd&ié: Photoelectron spectroscopy 3781

)]

T T

T T N
t/fs 20

FIG. 3. The initial 20 fs of the modulus of the correlation function obtained
from the PE band of the N;* 4 °II,«N, XX} transition (solid line),

and the first half-period of the modulus of the correlation function simulat-
ed within the harmonic model (dotted line),

ity of the sign of A is one of the major drawbacks of the
conventional Franck—Condon fitting within the harmonic
approximation.

A similar explanation of the mentioned discrepancies
between the experimental and model correlation function
during the first half-period of vibration can be arrived at by
considering the shape of the wave packet. The initial wave

FIG. 4. The initial 20 fs of the modulus of the correlation function obtained
from the PEband of the O, X 2Hg<702 X 32; transition (solid line), and
the first half-period of the modulus of the correlation function simulated
within the harmonic model (dotted line).

[cit)]

0 L LI S SR S SR U M SN S R ¥ TT T

T 1 T
t/fs 20

FIG. 5. The initial 20 fs of the modulus of the correlation function obtained
from the PE band of the NO* X '+« NO X I transition (solid line),
and the first half-period of the modulus of the correlation function simulat-
ed within the harmonic model (dotted line).

packet corresponds to a slightly asymmetric Morse-like vi-
brationless wave function of the lower potential, rather than
to a symmetric Gaussian wave packet pictured by the har-
monic approach. In comparison to the model, the actual
overlap with the initial position is enhanced when the packet
is traveling along the inner wall and reduced when the pack-
et is traveling along the outer wall. As a consequence, the
experimental and theoretical functions intersect somewhere
att>7'/4 and display a reversed relationship until the end of
the first half-period of vibration.

Note that the effect discussed above reflects the anhar-
monicity of the true potential and merely indicates the differ-
encein the steepness of the opposite walls, rather than direct-
ly disclosing the sign of A. The arguments which associate
this difference in steepness with the sign of A will be valid in
the form presented above whenever the actual potential can
be approximated with a Morse curve or another similar type
of potential. This encompasses almost all electronic states of
diatomics which support at least one bound level, as well as
many normal vibrational modes of polyatomics. However,
one can easily imagine in polyatomics a variety of special

TABLE 1. Speciroscopic constants of selected states of N,, O,, and NO
(from Ref. 25).

@, w,X, r,

N, X 'S} 2358.57cm ™! 14.32cm™! 1.097 68 A
N;" X 23} 2207.00 cm ™! 16.10cm™! 111642 A
N, 4 41, 1903.70 cm ™! 15.02 cm™! 1.1749 A
0, X *3; 1580.19 cm ™! 11.98 cm™! 120752 A
o;" X 1, 1904.77 cm ™! 16.26 cm™! 1.1164 A
NO X 211 1904.20 cm ™! 14.08 cm™! 1.150 77 A
NO* X '3+ 2376.42 cm ™! 16.26 cm™! 1.06322 A
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cases where the connection of the difference in steepness of
the walls to the sign of A is not straightforward (e.g., a dou-
ble well potential ). Even in cases like this, it should be possi-
ble to obtain the sign of A by similar arguments if the general
shape for the potential is either known or can be inferred.

Besides the discussed deviation from the model, the ex-
perimental correlation function is expected to show some
effects due to the dephasing of the initial wave packet. The
broadening of the wave packet will tend to cause a somewhat
“smeared out” overlap as the packet moves away from its
initial position. Around ¢ = 7'/2 additional effects due to the
“collision” with the opposite wall and subsequent fragmen-
tation of the wave packet may become visible (see Figs. 3, 4,
and 5). Finally, an additional discrepancy between the ex-
perimental and the theoretical correlation function arises
from the fact that 7’ is derived in the model solely from «’,
and does not include the anharmonic term. Clearly, the peri-
od of oscillation of the experimental correlation function re-
flects the fact that during its motion the wave packet is prob-
ing a certain portion of the potential, rather than just its
bottom, so that the value of 7' corresponds to some average
of the vibrational spacing in the observed photoabsorption
or photoionization band.

Having considered all of the above, several schemes of
using Eq. (2.13) to derive the value of A can be contemplat-
ed. What we would like to propose here, is a very simple and
effective procedure for obtaining the equilibrium bond dis-
tance for the upper state. Going back to Eq. (2.13), we can
see that for ¥ = 0 and ¢ = 7'/4, the modulus |C(?) | reduces
to the extremely convenient form

}C(r’/4)| =e 9
a:%mz (4.1)

which is, incidentally, the Franck-Condon factor of the
0«0 transition when the Poisson distribution is used (see
the Appendix). To obtain the change A in the equilibrium
bond distance, pretending that nothing is known about the
potential of the final state, we first find the period of oscilla-
tion by inspecting the experimental correlation function,
and determine its value at the quarter period. From the so
obtained parameter a and the known reduced mass and fre-
quency of the initial state, we derive the absolute value of A.
The sign of A can be decided upon as outlined earlier, using
as a reference a few points calculated from Eq. (2.14) some-
where in the range O <f < 7'/4. The numerical results ob-
tained by the above procedure for selected states of N+, O,
and NO™ are summarized in Table IL. It can be readily seen
that the derived equilibrium distances agree with the
known?® values (Table I) within + 0.0025 A.

Besides the argument of simplicity of Eq. (2.15), sam-
pling the experimental correlation function at 7'/4 seems to
be a good approach because this point is rather close to the
intersection of the experimental and theoretical curve. Un-
like the conventional Franck—Condon analysis, where a
Ieast-squares fit is necessary, a single point determination is
plausible here because the noise present in the experiment
appears in the time domain only at higher values of 7. The
approximation of ¥ = 0 can be defended on two grounds.

TABLE I1. Experimentally derived values of the vibrational period 7, pa-
rameter a, and equilibrium interatomic distance r, for sclected ionic states.

’

T a t,
N;" X237 15.4 fs 0.1052 1.1184 A
N,;& 4711, 18.3fs 1.5474 1177124
o X1, 18.2fs 1.5862 L1155 A
NO* X's+ 14.5 fs 1.6999 1.0610 A

Firstly, past experience with conventional Franck—-Condon
fits shows?® that A is the dominant factor in the vibrational
intensity distribution, while the exact knowledge of 7 is of
secondary importance (which is the main reason why the
Poisson distribution can yield more than qualitative re-
sults). Secondly, y reflects the initial uncertainty of the wave
packet. As the wave packet starts broadening in an anhar-
monic potential, the “effective” y departs from its initial val-
ue and can become, in principle, quite different at the sam-
pling point ¢=7"/4. Obviously, there is enough
accumulated evidence to the fact that the effects due to the
change in harmonic frequency and to the anharmonicity are
quite comparable in magnitude. Consequently, any refine-
ment that would include the first, immediately necessitates
the inclusion of the second.

As mentioned earlier, the first vibrational period of the
correlation functions for the N,' 4°I,«N, X'3},
O;" X°I,«<-0, X°3,,and NO* X 'S*«NO X *II pro-
cesses (Figs. 3, 4, and 5, respectively) show around 7'/2 a
presence of a small additional maximum due to the wave
packet splitting in an anharmonic potential. For the transi-
tion N, 4 ’II,«N, X 'SF, this effect has already been
observed' and the corresponding correlation function has
been shown up to 140 fs, revealing a gradual increase of in-
tensity of the additional maximum. In view of this, it seemed
that it would be very interesting if the correlation function
could be carried out to even higher values of 7, thus giving a
more complete account of the fragmentation pattern of the
wave packet. Unfortunately, the reliability of the correlation
function is severely limited at higher values of ¢ by the instru-
mental resolution and noise present in the experimental
data. On the other hand, the corrections that are applied to
the direct Fourier transform of the measured spectrum are
done with the intention to strip off the effects pertaining to
finite resolution, rotation and spin-orbit splitting. If these
corrections could be made perfect, the obtained correlation
function would correspond to a Fourier transform of a spec-
trum consisting of delta functions, with intensities propor-
tional to the appropriate squares of the vibrational transition
moments. In that sense, the method of correcting the Four-
ier transform of the measured intensities proposed by Lor-
quet et al.'* is only approximate, and will tend to yield a
correlation function which can display an enhanced time
decay of the maxima. In contrast to this, the correlation
method used in this paper may perhaps lead to an overcor-
rected correlation function, especially in cases where the ob-
served line profiles are broadened by dynamic processes like
dissociation or flow of energy into other modes of vibration
(for polyatomics). If this is the case, the use of the line pro-
file of the 0<-0 transition (which should be the least broad-
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ened) is suggested to avoid uneven corrections leading to
correlation functions displaying spurious increases or de-
creases of the maxima. The two methods of correction seem
to give a lower and upper limit to the true correlation func-
tion.

In order to avoid noise effects and obtain at least a quali-
tative account of the fragmentation patterns at higher times,
we constructed model spectra whereby the measured vibra-
tional peaks have been replaced by delta functions of the
same heights. The Fourier transforms of such model spectra
for times up to 300 fs are shown in Fig. 6 for the cases of
N;" 4%, <N, X'37,
NO* X 'S+« NO X °IL. The first 140 fs of the correlatlon
function from Fig 6, top, is very similar to the published '
correlation function for N;* 4 ’If, <N, X 'S . The main
difference is that the maxima show a monotonic decay in our
case, while the previously published function displays a
stronger initial decrease followed by an increase. The ex-
tended correlation function displays several very interesting
features. After as few as seven vibrational periods, it can be
seen very clearly that the initial wave packet has been broken
up into four distinct fragments, all of which have very nearly
the same period of vibration. The fragmentation that be-
comes dominant is not the one that appears first; rather, it is
the one that becomes discernible during the fifth vibrational
period. A careful inspection of the first vibrational period of
the correlation function reveals a presence of some asymme-
try, apparently indicating that already the first “collision”
with the opposite wall determines the fate of the initial wave
packet, while subsequent “collisions” simply enhance the
effect, causing a monotonic increase of the fragments at the
expense of the initial packet.

The extended correlation functions of Fig. 6, middle and
bottom, corresponding to O;% X°I,«0,X°3,, and
NO™* X '2*«-NO X °Il, respectively, display similarly in-
tricate fragmentation patterns; in both cases the initial wave
packet breaks up into three discernible fragments. In the
case of N;* X232 <N, X '3}, where the change in the
equilibrium bond lengths is roughly eight to nine times
smaller than in the other three cases examined here, the ini-

O; XN, <0, X*3~, and

tial wave packet probes a considerably smaller and much
more harmonic-like portion of the upper potential during its
vibrational motions. On this basis, one would expect an even
lesser discrepancy between the theoretical and experimental
functions during the first half-period of vibration and a con-
siderably milder fragmentation pattern thereafter. This is
indeed the case (Fig. 2). The corresponding extended corre-
lation function (not shown here), which is very similar to
the published one'* at short times, displays the development
of a severe asymmetry rather than distinct maxima due to
fragmentation of the wave packet.

V. CONCLUSIONS

The correlation function approach to Franck—Condon
analysis proves to be a versatile and extremely convenient
method for obtaining some knowledge about the potential
surfaces of electronically excited states. When geometric de-
tails are desired, the most useful property of the correlation
function is its nearly harmonic and noise-free behavior dur-
ing the first half-period of vibration. In conjunction with the
harmonic model presented here, this property allows the ex-
traction of accurate equilibrium internuclear distances of the
final states in a very simple and quick manner, without re-
sorting to a least-squares fit. Furthermore, comparisons of
the experimental findings with the harmonic model allow a
better insight into the anharmonic effects, like wave packet
dephasing and fragmentation. These effects significantly
change the shape of the wave packet and become dominant
already after a few vibrational periods.

The capabilities of the model have been convincingly
demonstrated for some diatomics as test cases. An extension
of this approach to polyatomic cases is under current investi-
gation. The beauty of the correlation function approach and
its advantage over conventional Franck-Condon analysis is
in its ability to discriminate against the anharmonic effects,
which are not readily recognizable in the overall vibrational
intensity distribution. Although photoelectron spectroscopy
was extensively used here as an example, there is no reason
why the method could not be applied to any other kind of
electronic transition.
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FIG. 6. The initial 300 fs of the moduli of the
correlation functions obtained from model PE
spectra whereby the measured vibrational
peaks were replaced by delta functions of
same height. Top: N 4°01,«-N, X 'Z};
middle: O;" X°I,«0,X33; bottom:
NO* X '2+*«NO XL
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APPENDIX
Within the linear harmonic approximation, the

Franck-Condon factors are given as the squares of the over-
lap integrals I, ,

{n/2} [m/2]

Imn = e*ﬂ/Z(l - 7/2)1/4 2

i=0 j=

(m!n!)l/z {i, j}

I, =f dx P *(x)P, (x — A), (Al)
where ®,, (x — A) and @, (x) are wave functions pertaining
to harmonic oscillators which are used to describe the initial
and the final potential curve, respectively, and A is the dis-
placement between the two oscillators. The analytical
expression for the overlap integrals 7,,, has been given in
closed form by several authors® ! and can be expressed as?’

( - 1)m+ja(n+m)/2—i~j—l(1 _,}/)n/Zfi(l +7/)m/2-—j(7//2)i+j
0

L {a(2k + 1) = (n — 2y (m — 2},

' (— DR(2/9)25(1 — )k
(n—2i)!(m*2j)!k2:,0( Y2/7) 7 7%)

ey
14 @+’
a=-ﬁ—a)(1—7)A2,

where @ and o’ are classical angular frequencies of the lower
and the upper oscillator, respectively, and 4 is the reduced
mass of the system, while {7/2] denotes the largest integer
smaller than or equal to n/2, and {i, j/} denotes the lesser of
the 7, j pair.

When the vibrational quantum number of the lower os-
cillator is restricted to zero, the overlap integral I, becomes

I()n :e—a/Z(l _ ,}/2)1/4

[n/2] . (1 ) . ( /2) (n|)1/2
>< an, —i _ /2~ i i . )
i-_z»o 4 v (n - Zl)' il

(A3)

The two parameters governing the vibrational intensity dis-
tribution are ¥, related to the difference in frequency of the
two oscillators, and A, the difference in the equilibrium bond
distances. It can be shown®® that A is the dominant param-
eter, while the knowledge of the exact value of y is of secon-
dary importance. A practical simplification which is often
used is to set y = 0, giving
n/2

Ly, =e L (A4)

n 1/2
(n1)!

which, when squared, resuits in the familiar Poisson distri-
bution.
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